Astrocyte proliferation in the chick auditory brainstem following cochlea removal.

نویسندگان

  • D I Lurie
  • E W Rubel
چکیده

Astrocytes in the central nervous system (CNS) respond to injury and disease by proliferating and extending processes. The intermediate filament protein of astrocytes, glial fibrillary acidic protein (GFAP) also increases in astrocytes. These cells are called "reactive astrocytes" and are thought to play a role in CNS repair. We have previously demonstrated rapid increases (< 6 hours) in GFAP-immunoreactive and silver-impregnated glial processes in the chick cochlear nucleus, nucleus magnocellularis (NM), following cochlea removal or activity blockade of the eighth nerve. It was not known whether these changes were the result of glial proliferation, glial hypertrophy, or both. The present study examined the time course of astrocyte proliferation in NM following cochlea removal. Postnatal chicks received unilateral cochlea removal and survived for 6, 12, 18, 24, 36, 48, and 72 hours. Bromodeoxyuridine was used to label proliferating cells. The volume and number of labeled cells in NM was calculated for both the experimental and control sides of the brains for experimental animals was well as for unoperated control animals. A subset of astrocytes continuously divide in the normal posthatch chick brainstem. The percentage of labeled nuclei increases within NM 36 hours following cochlea removal and is robust by 48 hours. This increase is due to astrocyte proliferation within, rather than migration to, NM. These results indicate that rapid increases in GFAP following reduced activity are independent of cell proliferation. The time course of astrocyte proliferation suggests that cellular degeneration within the nucleus may play a role in upregulating astrocyte proliferation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tyrosine phosphatase SHP-1 immunoreactivity increases in a subset of astrocytes following deafferentation of the chicken auditory brainstem.

Proliferation of astrocytes is a dramatic response of the central nervous system (CNS) to injury and disease. Such proliferation results in the formation of the neural/glial scar and the reconstitution of the glial limitans. However, not all astrocytes enter the proliferative cycle following injury, and for those that do, the period of cell division is limited. Little attention has focused on t...

متن کامل

Increased deafferentation-induced cell death in chick brainstem auditory neurons following blockade of mitochondrial protein synthesis with chloramphenicol.

Second-order auditory neurons in nucleus magnocellularis (NM) of the chick brainstem undergo a series of rapid metabolic changes following unilateral cochlea removal, culminating in the death of 25% of NM neurons. Within hours of cochlea removal, ipsilateral NM neurons show marked increases in histochemical staining for the mitochondrial enzymes succinate dehydrogenase and cytochrome oxidase (C...

متن کامل

Altered ma late dehydrogenase activity in nucleus magnoce of the chicken following cochlea removal llularis

The metabolism of second order auditory neurons in nucleus magnocellularis (NM) in the chick brainstem can be profoundly altered when excitatory input from the cochlea is removed. Within hours of cochlea removal, NM neurons show an increase in histochemical staining for the Kreb’s cycle enzyme succinate dehydrogenase (SDH), followed in several days by decreases in SDH staining. We examined the ...

متن کامل

Afferent influences on brainstem auditory nuclei of the chicken: regulation of transcriptional activity following cochlea removal.

Neuronal survival in the cochlear nucleus of young animals is regulated by afferent activity. Removal or blockade of nerve VIII input results in the death of 20-40% of neurons in the cochlear nucleus, nucleus magnocellularis (NM), of the 10-14 days posthatch chick. Neuronal death in NM is preceded by complete failure of protein synthesis and degradation of ribosomes. In addition, there is a bip...

متن کامل

Effect of Infant Prematurity on Auditory Brainstem Response at Preschool Age

Introduction: Preterm birth is a risk factor for a number of conditions that requires comprehensive examination. Our study was designed to investigate the impact of preterm birth on the processing of auditory stimuli and brain structures at the brainstem level at a preschool age.   Materials and Methods: An auditory brainstem response (ABR) test was performed with low rates of stimuli in 60 ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 346 2  شماره 

صفحات  -

تاریخ انتشار 1994